Partial Regularity of Weak Solutions of the Viscoelastic Navier-Stokes Equations with Damping
نویسنده
چکیده
We prove an analogue of the Caffarelli–Kohn–Nirenberg theorem for weak solutions of a system of PDEs that model a viscoelastic fluid in the presence of an energy damping mechanism. The system was recently introduced as a possible method of establishing the global-in-time existence of weak solutions of the well-known Oldroyd system.
منابع مشابه
M ay 2 00 5 Regularity criteria for suitable weak solutions of the Navier - Stokes equations near the boundary
We present some new regularity criteria for “suitable weak solutions” of the Navier-Stokes equations near the boundary in dimension three. We prove that suitable weak solutions are Hölder continuous up to the boundary provided that the scaled mixed norm L x,t with 3/p + 2/q ≤ 2, 2 < q ≤ ∞, (p, q) 6= (3/2,∞), is small near the boundary. Our methods yield new results in the interior case as well....
متن کاملGlobal Weak Solutions to the Compressible Quantum Navier-Stokes Equations with Damping
The global-in-time existence of weak solutions to the barotropic compressible quantum Navier-Stokes equations with damping is proved for large data in three dimensional space. The model consists of the compressible Navier-Stokes equations with degenerate viscosity, and a nonlinear third-order differential operator, with the quantum Bohm potential, and the damping terms. The global weak solution...
متن کاملOn Partial Regularity of Steady-state Solutions to the 6d Navier-stokes Equations
Consider steady-state weak solutions to the incompressible Navier-Stokes equations in six spatial dimensions. We prove that the 2D Hausdorff measure of the set of singular points is equal to zero. This problem was mentioned in 1988 by Struwe [24], during his study of the five dimensional case.
متن کاملConditions for the Local Regularity of Weak Solutions of the Navier-stokes Equations near the Boundary
In this paper we present conditions for the local regularity of weak solutions of the Navier-Stokes equations near the smooth boundary.
متن کاملRegularity for Suitable Weak Solutions to the Navier-Stokes Equations in Critical Morrey Spaces
A class of sufficient conditions of local regularity for suitable weak solutions to the nonstationary three-dimensional Navier-Stokes equations are discussed. The corresponding results are formulated in terms of functionals which are invariant with respect to the Navier-Stokes equations scaling. The famous Caffarelli-Kohn-Nirenberg condition is contained in that class as a particular case. 1991...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 45 شماره
صفحات -
تاریخ انتشار 2013